The monocarboxylate transporter homolog Mch5p catalyzes riboflavin (vitamin B2) uptake in Saccharomyces cerevisiae.

نویسندگان

  • Petra Reihl
  • Jürgen Stolz
چکیده

Riboflavin is a water-soluble vitamin (vitamin B2) required for the production of the flavin cofactors FMN and FAD. Mammals are unable to synthesize riboflavin and need a dietary supply of the vitamin. Riboflavin transport proteins operating in the plasma membrane thus have an important role in the absorption of the vitamin. However, their sequences remained elusive, and not a single eukaryotic riboflavin transporter is known to date. Here we used a genetic approach to isolate MCH5, a Saccharomyces cerevisiae gene with homology to mammalian monocarboxylate transporters, and characterize the protein as a plasma membrane transporter for riboflavin. This conclusion is based on the suppression of riboflavin biosynthetic mutants (rib mutants) by overexpression of MCH5 and by synthetic growth defects caused by deletion of MCH5 in rib mutants. We also show that cellular processes in multiple compartments are affected by deletion of MCH5 and localize the protein to the plasma membrane. Transport experiments in S. cerevisiae and Schizosaccharomyces pombe cells demonstrate that Mch5p is a high affinity transporter (Km = 17 microM) with a pH optimum at pH 7.5. Riboflavin uptake is not inhibited by protonophores, does not require metabolic energy, and operates by a facilitated diffusion mechanism. The expression of MCH5 is regulated by the cellular riboflavin content. This indicates that S. cerevisiae has a mechanism to sense riboflavin and avert riboflavin deficiency by increasing the expression of the plasma membrane transporter MCH5. Moreover, the other members of the MCH gene family appear to have unrelated functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The proline-dependent transcription factor Put3 regulates the expression of the riboflavin transporter MCH5 in Saccharomyces cerevisiae.

Like most microorganisms, the yeast Saccharomyces cerevisiae is prototrophic for riboflavin (vitamin B2). Riboflavin auxotrophic mutants with deletions in any of the RIB genes frequently segregate colonies with improved growth. We demonstrate by reporter assays and Western blots that these suppressor mutants overexpress the plasma-membrane riboflavin transporter MCH5. Frequently, this overexpre...

متن کامل

The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane.

We have characterized the monocarboxylate permease family of Saccharomyces cerevisiae comprising five proteins. We could not find any evidence that the monocarboxylate transporter-homologous (Mch) proteins of S. cerevisiae are involved in the uptake or secretion of monocarboxylates such as lactate, pyruvate or acetate across the plasma membrane. A yeast mutant strain deleted for all five MCH ge...

متن کامل

Genome-wide screen for oxalate-sensitive mutants of Saccharomyces cerevisiae.

Oxalic acid is an important virulence factor produced by phytopathogenic filamentous fungi. In order to discover yeast genes whose orthologs in the pathogen may confer self-tolerance and whose plant orthologs may protect the host, a Saccharomyces cerevisiae deletion library consisting of 4,827 haploid mutants harboring deletions in nonessential genes was screened for growth inhibition and survi...

متن کامل

Genome scale metabolic modeling of the riboflavin overproducer Ashbya gossypii.

Ashbya gossypii is a filamentous fungus that naturally overproduces riboflavin, or vitamin B2. Advances in genetic and metabolic engineering of A. gossypii have permitted the switch from industrial chemical synthesis to the current biotechnological production of this vitamin. Additionally, A. gossypii is a model organism with one of the smallest eukaryote genomes being phylogenetically close to...

متن کامل

Effect of dietary supplementation with zinc enriched yeast (Saccharomyces cerevisiae) on immunity of rainbow trout (Oncorhynchus mykiss)

Zinc (Zn) is an essential trace element in all living organisms, and the first eukaryotic Zn uptake transporter was discovered in the yeast, Saccharomyces cerevisiae. Zinc-enriched yeast is a currently available Zn supplement. The purpose of the investigation was to compare and evaluate the effect of Zn enriched yeast in rainbow trout. The fish (mean body weight 10 ± 0.5 g) were fed a commercia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 48  شماره 

صفحات  -

تاریخ انتشار 2005